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1 Introduction
The multivariate hypergeometric distribution naturally arises in algorithm anal-
ysis and discrete math. Often, one is trying to prove large-deviation bounds or
bounds on the expectation of a multivariate hypergeometric random variable,
(m1, . . . ,mk). This is naturally complicated by the inter-dependencies between
m1, . . . ,mk. Towards a resolution, this note shows that the expectation of a
multivariate hypergeometric distribution can be upper bounded by suitably
chosen independent binomials. In particular, this result can be extended to a
bound on the moment generating function and in turn provide large deviation
bounds.

2 Setup and Main Result
Suppose one has an urn containing balls, each labeled with a number from 1 to
k ∈ N, and m ∈ N balls are selected uniformly, without replacement. Let V of
size n ∈ N denote the set of all balls in urn. For i ∈ [k], define Si as the set of balls
with label i ∈ [k]. If S of size m is the set of balls picked then |S∩S1|, . . . , |S∩Sk|—
the number of balls picked of each label—form a multivariate hypergeometric
distribution. Now it is shown that |S ∩ S1|, . . . , |S ∩ Sk| have a strong negative
inter-dependence in that their expectation with respect to a wide range of
functions is upper bounded by the same expectation over a multinomial or
independent binomial distribution.
Theorem 1. Fix a partition S1, . . . , Sk of V and any m ∈ N. Let b1, . . . , bk be
independent binomial random variables such that bi ∼ bin(m, |Si|/n). Then for
any g : R → R>0 that is log convex and increasing, the following holds:

E
S∼Unif{S′⊆V :|S′|=m}

[g(|S ∩ S1|) · · · g(|S ∩ Sk|)] ≤ E[g(b1)] · · ·E[g(bk)].

Corollary 1. Fix a partition S1, . . . , Sk of V and any m ∈ N. Let b1, . . . , bk be
a multinomial random variable with m trials such that bi ∼ bin(m, |Si|/n). Then
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for any f : Rk → R that is convex, the following holds:

E
S∼Unif{S′⊆V :|S′|=m}

[f(|S ∩ S1|, . . . , |S ∩ Sk|)] ≤ E[f(b1, . . . , bk)].

Proof of Theorem 1. This argument was inspired by techniques introduced by
Luh and Pippenger [2014]. Consider creating two sequences C, C̃ through the
following random process: starting with C = C̃ = ∅, sample v uniformly from
V and append v to C̃. If v is not already in C then add it to the end of
C. Repeat until all v ∈ V have been sampled (this process terminates with
probability 1). After the process is done the sequences are: C = (c1, c2, . . . , cn)
and C̃ = (c̃1, c̃2, . . . ).

At this point it will be useful to define σ : [|C̃|] → [n] such that σ(j) is the
smallest index i ∈ [n] such that ci = c̃j which exists by construction. Moreover,
it is easy to see that σ(j) ≤ j for all j ∈ [|C̃|].

For all i ∈ [k], j ∈ [n], define the following random variables: xij ≡ 1[cj ∈ Si]
and x̃ij ≡ 1[c̃j ∈ Si]. Thus, S ≡ {c1, . . . , cm} is a uniformly sampled m-sized
subset of V , and for all i ∈ [m], |S ∩ Si| =

∑
j∈[m] xij . Furthermore, for i ∈ [k],

bi ≡
∑

j∈[m] x̃ij is distributed like a binomial with m trials and probability of
success |Si|/m.

To finish the proof, it is shown that for all i ∈ [m], E[bi| |S ∩ S1|, . . . , |S ∩ Sk|] =
|S ∩ Si|. Since C is a uniformly, randomly chosen ordering of the v ∈ V , for any
j, j′ ∈ [m], we have that:

E[xij | |S∩S1| = s1, . . . , |S∩Sk| = sk] = E[xij′ | |S∩S1| = s1, . . . , |S∩Sk| = sk].

Thus, for any j ∈ [m], E[xij | |S ∩ S1| = s1, . . . , |S ∩ Sk| = sk] = si/m since
si =

∑
j∈[m] E[xij | |S ∩ S1| = s1, . . . , |S ∩ Sk| = sk]. This gives us that:

E[bi| |S ∩ S1| = s1, . . . , |S ∩ Sk| = sk]

=
∑
j∈[m]

E[x̃ij | |S ∩ S1| = s1, . . . , |S ∩ Sk| = sk]

=
∑
j∈[m]

E[xiσ(j)| |S ∩ S1| = s1, . . . , |S ∩ Sk| = sk]

=
∑
j∈[m]

si/m = si.

Hence E[bi| |S∩S1|, . . . , |S∩Sk|] = |S∩Si|. Since g is log convex, the function f :
Rk → R>0 defined as f(a1, . . . , ak) = g(a1) · · · g(ak) = exp

(∑
i∈[k] log(g(ai))

)
is convex as well. By multivariate Jensen’s inequality, we get:

E[f(|S ∩ S1|, . . . , |S ∩ Sk|)]
=E[f(E[bi| |S ∩ S1|, . . . , |S ∩ Sk|], . . . ,E[bi| |S ∩ S1|, . . . , |S ∩ Sk|])]
≤E[E[f(b1, . . . , bk)| |S ∩ S1|, . . . , |S ∩ Sk|]]
=E[f(b1, . . . , bk)] = E[g(b1) · · · g(bk)].
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Note that b1, . . . , bk form a multinomial distribution so the above proves Corollary
1. To finish the proof we apply a result by Dubhashi and Ranjan [1996] which
proved that for g increasing the following holds:

E[g(b1) · · · g(bk)] ≤ E[g(b1)] · · ·E[g(bk)].
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